Docking by structural similarity at protein-protein interfaces.
نویسندگان
چکیده
Rapid accumulation of experimental data on protein-protein complexes drives the paradigm shift in protein docking from "traditional," template free approaches to template based techniques. Homology docking algorithms based on sequence similarity between target and template complexes can account for up to 20% of known protein-protein interactions. When highly homologous templates for the target complex are not available, but the structure of the target monomers is known, docking by local structural alignment may provide an adequate solution. Such an algorithm was developed based on the structural comparison of monomers to cocrystallized interfaces. A library of the interfaces was generated from cocrystallized protein-protein complexes in PDB. The partial structure alignment algorithm was validated on the DOCKGROUND benchmark sets. The optimal performance of the partial (interface) structure alignment was achieved with the interface residues defined by 12 Å distance across the interface. Overall, the partial structure alignment yielded more accurate models than the full structure alignment. Most templates identified by the partial structure alignment had low sequence identity to the target, which makes them hard to detect by sequence-based methods. The results indicate that the structure alignment techniques provide a much needed addition to the docking arsenal, with the combined structure alignment and template free docking success rate significantly surpassing that of the free docking alone.
منابع مشابه
Global and local structural similarity in protein-protein complexes: implications for template-based docking.
The increasing amount of structural information on protein-protein interactions makes it possible to predict the structure of protein-protein complexes by comparison/alignment of the interacting proteins to the ones in cocrystallized complexes. In the predictions based on structure similarity, the template search is performed by structural alignment of the target interactors with the entire str...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملDOCKGROUND resource for studying protein-protein interfaces
MOTIVATION Public resources for studying protein interfaces are necessary for better understanding of molecular recognition and developing intermolecular potentials, search procedures and scoring functions for the prediction of protein complexes. RESULTS The first release of the DOCKGROUND resource implements a comprehensive database of co-crystallized (bound-bound) protein-protein complexes,...
متن کاملNew benchmark metrics for protein-protein docking methods.
With the development of many computational methods that predict the structural models of protein-protein complexes, there is a pressing need to benchmark their performance. As was the case for protein monomers, assessing the quality of models of protein complexes is not straightforward. An effective scoring scheme should be able to detect substructure similarity and estimate its statistical sig...
متن کاملiAlign: a method for the structural comparison of protein-protein interfaces
MOTIVATION Protein-protein interactions play an essential role in many cellular processes. The rapid accumulation of protein-protein complex structures provides an unprecedented opportunity for comparative studies of protein-protein interactions. To facilitate such studies, it is necessary to develop an accurate and efficient computational algorithm for the comparison of protein-protein interac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 78 15 شماره
صفحات -
تاریخ انتشار 2010